pix2gestalt: Amodal Segmentation by Synthesizing Wholes

Ege Ozguroglu¹ Ruoshi Liu¹ Dídac Surís¹ Dian Chen² Achal Dave² Pavel Tokmakov² Carl Vondrick¹
¹Columbia University ²Toyota Research Institute
gestalt.cs.columbia.edu

Abstract

We introduce pix2gestalt, a framework for zero-shot amodal segmentation, which learns to estimate the shape and appearance of whole objects that are only partially visible behind occlusions. By capitalizing on large-scale diffusion models and transferring their representations to this task, we learn a conditional diffusion model for reconstructing whole objects in challenging zero-shot cases, including examples that break natural and physical priors, such as art. As training data, we use a synthetically curated dataset containing occluded objects paired with their whole counterparts. Experiments show that our approach outperforms supervised baselines on established benchmarks. Our model can furthermore be used to significantly improve the performance of existing object recognition and 3D reconstruction methods in the presence of occlusions.

1. Introduction

Although only parts of the objects in Figure 1 are visible, you are able to visualize the whole object, recognize the category, and imagine its 3D geometry. Amodal completion is the task of predicting the whole shape and appearance of objects that are not fully visible, and this ability is crucial for many downstream applications in vision, graphics, and robotics. Learned by children from an early age [30], the ability can be partly explained by experience, but we seem to be able to generalize to challenging situations that break natural priors and physical constraints with ease. In fact, we can imagine the appearance of objects during occlusions that cannot exist in the physical world, such as the horse in Magritte’s The Blank Signature.

What makes amodal completion challenging compared to other synthesis tasks is that it requires grouping for both the visible and hidden parts of an object. To complete an object, we must be able to first recognize the object from partial observations, then synthesize only the missing regions for the object. Computer vision researchers and gestalt psychologists have extensively studied amodal completion in the past [10, 17, 18, 21, 33, 35, 49, 53], creating models that explicitly learn figure-ground separation. However, the prior work has been limited to representing objects in closed-world settings, restricted to only operating on the datasets on which they trained.

In this paper, we propose an approach for zero-shot amodal segmentation and reconstruction by learning to synthesize whole objects first. Our approach capitalizes on denoising diffusion models [14], which are excellent representations of the natural image manifold and capture all different types of whole objects and their occlusions. Due to their large-scale training data, we hypothesize such pre-trained models have implicitly learned amodal representations (Figure 2), which we can reconfigure to encode object grouping and perform amodal completion. By learning from a synthetic dataset of occlusions and their whole counterparts, we create a conditional diffusion model that, given an RGB image and a point prompt, generates whole objects behind occlusions and other obstructions.

Our main result is showing that we are able to achieve state-of-the-art amodal segmentation results in a zero-shot setting, outperforming the methods that were specifically supervised on those benchmarks. We furthermore show that our method can be used as a drop-in module to significantly improve the performance of existing object recognition and 3D reconstruction methods in the presence of occlusions. An additional benefit of the diffusion framework is that it allows sampling several variations of the reconstruction, naturally handling the inherent ambiguity of the occlusions.

2. Related Work

We briefly review related work in amodal completion, analysis by synthesis, and denoising diffusion models for vision.

2.1. Amodal Completion and Segmentation

In this work, we define amodal completion as the task of generating the image of the whole object [10, 49], amodal segmentation as generating the segmentation mask of the whole object [18, 21, 33, 35, 53], and amodal detection as predicting the bounding box of the whole object [15, 17]. Most prior work focuses on the latter two tasks, due to the challenges in generating the (possibly ambiguous) pixels behind an occlusion. In addition, to our knowledge, all prior work on these tasks is limited to a small closed-world
Figure 1. **Amodal Segmentation and Reconstruction via Synthesis.** We present *pix2gestalt*, a method to synthesize whole objects from only partially visible ones, enabling amodal segmentation, recognition, novel-view synthesis, and 3D reconstruction of occluded objects.
of objects [17, 18, 21, 33, 49] or to synthetic data [10]. For example, PCNet [49], the previous state-of-the-art method for amodal segmentation, operates only on a closed-world set of classes in Amodal COCO [53].

Our approach, by contrast, provides rich image completions with accurate masks, generalizing to diverse zero-shot settings, while still outperforming state-of-the-art methods in a closed-world. To achieve this degree of generalization, we capitalize on large-scale diffusion models, which implicitly learn internal representations of whole objects. We propose to unlock this capability by fine-tuning a diffusion model on a synthetically generated, realistic dataset of varied occlusions.

2.2. Analysis by Synthesis

Our approach is heavily inspired by analysis by synthesis [47] — a generative approach for visual reasoning. Image parsing [42] was a representative work that unifies segmentation, recognition, and detection by generation. Prior works have applied the analysis by synthesis approaches on various problems including face recognition [5, 42], pose estimation [27, 51], 3D reconstruction [22, 23], semantic image editing [1, 24, 52]. In this paper, we aim to harness the power of generative models trained with internet-scale data for the task of amodal completion, thereby aiding various tasks such as recognition, segmentation, and 3D reconstruction in the presence of occlusions.

2.3. Diffusion Models

Recently, Denoising Diffusion Probabilistic Model [14], or DDPM, has emerged as one of the most widely used generative architectures in computer vision due to its ability to model multi-modal distributions, training stability, and scalability. [8] first showed that diffusion models outperform GANs [12] in image synthesis. Stable Diffusion [36], trained on LAION-5B [39], applied diffusion model in the latent space of a variational autoencoder [19] to improve computational efficiency. Later, a series of major improvements were made to improve diffusion model performance [13, 41]. With the release of Stable Diffusion as a strong generative prior, many works have adapted it to solve tasks in different domain such as image editing [6, 11, 37], 3D [7, 25, 45], and modal segmentation [2, 3, 46]. In this work, we leverage the strong occlusion and complete object priors provided by internet-pretrained diffusion model to solve the zero-shot amodal completion task.

3. Amodal Completion via Generation

Given an RGB image x with an occluded object that is partially visible, our goal is to predict a new image with the shape and appearance of the whole object, and only the whole object. Our approach will accept any point or mask as a prompt p indicating the modal object:

$$\hat{x}_p = f_\theta(x, p)$$

where \hat{x}_p is our estimate of the whole object indicated by p. Mapping from x to this unified whole form, i.e. gestalt of the occluded object, we name our method pix2gestalt. We want \hat{x} to be perceptually similar to the true but unobserved whole of the object as if there was no occlusion. We will use a conditional diffusion model (see Figure 3) for f_θ.

An advantage of this approach is that, once we estimate an image of the whole object \hat{x}, we are able to perform any other computer vision task on it, providing a unified method to handle occlusions across different tasks. Since we will directly synthesize the pixels of the whole object, we can aid off-the-shelf approaches to perform segmentation, recognition, and 3D reconstruction of occluded objects.

To perform amodal completion, f needs to learn a representation of whole objects in the visual world. Due to their scale of training data, we will capitalize on large pretrained diffusion models, such as Stable Diffusion, which are excellent representations of the natural image manifold and have the support to generate unoccluded objects. However, although they generate high-quality images, their representations do not explicitly encode the grouping of objects and their boundaries to the background.

3.1. Whole-Part Pairs

To learn the conditional diffusion model f with the ability for grouping, we build a large-scale paired dataset of occluded objects and their whole counterparts. Unfortunately, collecting a natural image dataset of these pairs is challenging at scale. Prior datasets provide amodal segmentation annotations [33, 53], but they do not reveal the pixels behind an occlusion. Other datasets have relied on graphical simulation [16], which lack the realistic complexity and scale of everyday object categories.

We build paired data by automatically overlaying objects over natural images. The original images provide ground-truth for the content behind occlusions. However, we need to ensure that we only occlude whole objects in this construction, as otherwise our model could learn to generate
Figure 3. **pix2gestalt** is an amodal completion model using a latent diffusion architecture. Conditioned on an input occlusion image and a region of interest, the whole (amodal) form is synthesized, thereby allowing other visual tasks to be performed on it too. For conditioning details, see section 3.2.

incomplete objects. To this end, we use a heuristic that, if the object is closer to the camera than its neighboring objects, then it is likely a whole object. We use Segment Anything [20] to automatically find object candidates in the SA-1B dataset, and use the off-the-shelf monocular depth estimator MiDaS [4] to select which objects are whole. For each image with at least one whole object, we sample an occluder and superimpose it, resulting in a paired dataset of 837K images and their whole counterparts. Figure 4 illustrates this construction and shows examples of the heuristic.

3.2. Conditional Diffusion

Given pairs of an image x and its whole counterpart \hat{x}_p, we fine-tune a conditional diffusion model to perform amodal completion while maintaining the zero-shot capabilities of the pre-trained model. We solve for the following latent diffusion objective:

$$
\min_\theta \mathbb{E}_{z \sim \mathcal{E}(x), t, \epsilon \sim \mathcal{N}(0,1)} \left[||\epsilon - \epsilon_\theta(z_t, \mathcal{E}(x), t, \mathcal{E}(p), \mathcal{C}(x))||^2_2 \right]
$$

where $0 \leq t < 1000$ is the diffusion time step, z_t is the embedding of the noised amodal target image \hat{x}_p, $\mathcal{C}(x)$ is the CLIP embedding of the input image, and $\mathcal{E}(\cdot)$ is a VAE embedding. Following [6, 25], we apply classifier-free guidance (CFG) [13] by setting the conditional information to a null vector randomly.

Amodal completion requires reasoning about the whole shape, its appearance, and contextual visual cues of the scene. We adapt the design in [6, 25] to condition the diffusion model ϵ_θ in two separate streams. $\mathcal{C}(x)$ conditions the diffusion model ϵ_θ via cross-attention on the semantic features of the partially visible object in x as specified by p, providing high-level perception. On the VAE stream, we channel concatenate $\mathcal{E}(x)$ and z_t, providing low-level visual details (shade, color, texture), as well as $\mathcal{E}(p)$ to indicate the visible region of the object.

After ϵ_θ is trained, f can generate \hat{x}_p by performing iterative denoising [36]. The CFG can be scaled to control impact of the conditioning on the completion.

3.3. Amodal Base Representations

Since we synthesize RGB images of the whole object, our approach makes it straightforward to equip various computer vision methods with the ability to handle occlusions. We discuss a few common cases.

Image Segmentation aims to find the spatial boundaries of an object given an image x and an initial prompt p. We can perform amodal segmentation by completing an occluded object with f, then thresholding the result to obtain an amodal segmentation map. Note that this problem is under-constrained as there are multiple possible solutions. Given the uncertainty, we found that sampling multiple completions and performing a majority vote on the segmentation masks works best in practice.

Object Recognition is the task of classifying an object located in a bounding box or mask p. We can zero-shot recognize significantly occluded objects by first completing the whole object with f, then classifying the amodal completion with CLIP.

3D Reconstruction estimates the appearance and geometry of an object. We can zero-shot reconstruct objects with partial occlusions by first completing the whole object with f, then applying SyncDreamer and Score Distillation Sampling [32] to estimate a textured mesh.
Figure 4. Constructing Training Data. To ensure we only occlude whole objects, we use a heuristic that objects closer to the camera than its neighbors are likely whole objects. The green outline around the object shows where the estimated depth is closer to the camera than the background (the red shows when it is not).

4. Experiments

We evaluate pix2gestalt’s ability to perform zero-shot amodal completion for three tasks: amodal segmentation, occluded object recognition, and amodal 3D reconstruction. We show that our method provides amodal completions that directly lead to strong results in all tasks.

4.1. Amodal Segmentation

Setup. Amodal segmentation requires segmenting the full extent of a (possibly occluded) object. We evaluate this task on the Amodal COCO (COCO-A) [53] and Amodal Berkeley Segmentation (BSDS-A) datasets [28]. For evaluation, COCO-A provides 13,000 amodal annotations of objects in 2,500 images, while BSDS-A provides 650 objects from 200 images. For both datasets, we evaluate methods that take as input an image and a (modal) mask of the visible extent of an object, and output an amodal mask of the full extent of the object. Following [49], we evaluate segmentations using mean intersection-over-union (mIoU). We follow the strategy in Section 3.3 to convert our amodal completions into segmentation masks.

We evaluate three baselines for amodal segmentation. The first method is PCNet [49], which is trained for amodal segmentation specifically for COCO-A. Next, we compare to two zero-shot methods, which do not train on COCO-A: Segment Anything (SAM) [20], a strong modal segmentation method, and Inpainting using Stable Diffusion-XL [31]. To evaluate inpainting methods, we provide as input an image with all but the visible object region erased, and convert the completed image output by the method into an amodal segmentation mask following the same strategy as for our method.

Results. Table 1 compares pix2gestalt with prior work. Despite never training on the COCO-A dataset, our method outperforms all baselines, including PCNet, which uses COCO-A images for training, and even PCNet-Sup, which is supervised using human-annotated amodal segmentations from COCO-A’s training set. Compared to other zero-shot methods, our improvements are dramatic, validating the generalization abilities of our method. Notably, we also outperform the inpainting baseline which is based off a larger, more recent variant of Stable Diffusion [31]. This demonstrates that internet-scale training alone is not sufficient and our fine-tuning approach is key to reconfigure priors from pre-training for amodal completion.

We further analyze amodal completions qualitatively in Figure 6. While SD-XL often hallucinates extraneous, unrealistic details (e.g. person in front of the bus in the second row), PCNet tends to fail to recover the full extent of objects—often only generating the visible region, as in the Mario example in the third row. In contrast, pix2gestalt provides accurate, complete reconstructions of occluded objects on both COCO-A (Figure 6) and BSDS-A (Figure 7). Our method generalizes well beyond the typical occlusion scenarios found in those benchmarks. Figure 5 shows several examples of out-of-distribution images, including art pieces, illusions, and images taken by ourselves that are successfully handled by our method. Note that no prior work has shown open-world generalization (see 2.1).

Figure 8 illustrates the ability of the approach to generate diverse samples in shape and appearance when there is uncertainty in the final completion. For example, it is
able to synthesize several plausible completions of the occluded house in the painting. We quantitatively evaluate the diversity of our samples in the last row of Table 1 by sampling from our model three times and reporting the performance for the best sample (“Best of 3”). Finally, we found limitations of our approach in situations that require commonsense or physical reasoning. We show two examples in Figure 9.

4.2. Occluded Object Recognition

Next, we evaluate the utility of our method for recognizing occluded objects.

Setup. We use the Occluded and Separated COCO benchmarks [48] for evaluating classification accuracy under occlusions. The former consists of partially occluded objects, whereas Separated COCO contains objects whose modal region is separated into disjoint segments by the occluder(s), resulting in a more challenging problem setting. We evaluate on all 80 COCO semantic categories in the datasets using Top 1 and Top 3 accuracy.

We use CLIP [34] as the base open-vocabulary classifier. As baselines, we evaluate CLIP without any completion, reporting three variants: providing the entire image (CLIP), providing the entire image with a visual prompt (a red circle, as in Shtedritski et al. [40]) around the occluded object, or providing an image with all but the visible portion of the occluded object masked out. To evaluate our approach, we first utilize it to complete the occluded object, and then classify the output image using CLIP.

Results. Table 2 compares our method with the baselines. Visual prompting with a red circle (RC) and masking all but the visible object (Vis. Obj.) provide improvements over directly passing the image to CLIP on the simpler Occluded COCO benchmark, but fail to improve, and some times even decreases the performance of the baseline CLIP on the more challenging Separated COCO variant. Our method (Ours + CLIP), however, strongly outperforms all baselines for both the occluded and separated datasets, verifying the quality of our completions.

4.3. Amodal 3D Reconstruction

Finally, we evaluate our method for improving 3D reconstruction of occluded objects.

Setup. We focus on two tasks: Novel-view synthesis and
single-view 3D reconstruction.

To demonstrate pix2gestalt’s performance as a drop-in module to 3D foundation models [25, 26, 38], we replicate the evaluation procedure of Zero-1-to-3 [25, 26] on Google Scanned Objects (GSO) [9], a dataset of common household objects 3D scanned for use in embodied, synthetic, and 3D perception tasks. We use 30 randomly sampled objects from GSO ranging from daily objects to animals. For each object, we render a 256x256 image with synthetic occlusions sampled from the full dataset of 1,030 objects in GSO.
Figure 7. **Amodal Berkeley Segmentation Dataset Qualitative Results.** Our method provides accurate, complete reconstructions of occluded objects.

Figure 8. **Diversity in Samples.** Amodal completion has inherent uncertainties. By sampling from the diffusion process multiple times, the method synthesizes multiple plausible wholes that are consistent with the input observations.

Table 2. **Occluded Object Recognition.** We report zero-shot classification accuracy on Occluded and Separated COCO [48]. While simple baselines fail to improve CLIP performance in the more challenging Separated COCO setting, our method consistently improves recognition accuracy by large margins. See Section 4.2 for analysis.

We render from a randomly sampled view to avoid canonical poses, and generate two occluded images for each of the 30 objects, resulting in 60 samples.

For amodal novel-view synthesis, we quantitatively evaluate our method using 3 metrics: PSNR, SSIM [44], and LPIPS [50], measuring the image-similarity of the input and ground truth views. For 3D reconstruction, we use the Volume IoU and Chamfer Distance metrics. We compare our approach with SyncDreamer [26], a 3D generative model that fine-tunes Zero123-XL [7, 25] for multi-view consistent novel view synthesis and consequent 3D reconstruction with NeuS [43] and NeRF [29]. Our first baseline provides as input to SyncDreamer the segmentation mask of all foreground objects, following the standard protocol. To avoid reconstructing occluded objects, we additionally evaluate two variants that use SAM [20] to estimate the mask of only the object of interest, or the ground truth mask for the object of interest (GT Mask). Finally, to evaluate our method, we provide as input the full object completed by our method, along with the corresponding amodal mask. We evaluate two variants of our method: One where we provide a modal mask for the object of interested as estimated by SAM (Ours (SAM Mask)) and one where we use the ground truth modal mask (Ours (GT Mask)).

Results. We compare our approach with the two baselines in Table 4 for novel view synthesis and Table 3 for 3D reconstruction. Quantitative results demonstrate that we strongly outperform the baselines for both tasks. In novel-
Figure 10. **Amodal 3D Reconstruction qualitative results.** The object of interest is specified by a point prompt, shown in yellow.

Incorporating pix2gestalt as a drop-in module to state-of-the-art 3D reconstruction models allows us to address challenging and diverse occlusion scenarios with ease.

Table 3. **Single-view 3D Reconstruction.** We report Chamfer Distance and Volumetric IoU for Google Scanned Objects. See Section 4.3 for analysis.

<table>
<thead>
<tr>
<th></th>
<th>CD ↓</th>
<th>IoU ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>SyncDreamer [26]</td>
<td>0.0884</td>
<td>0.2741</td>
</tr>
<tr>
<td>SAM Mask + SyncDr.</td>
<td>0.1182</td>
<td>0.0926</td>
</tr>
<tr>
<td>Ours (SAM Mask) + SyncDr.</td>
<td>0.0784</td>
<td>0.3312</td>
</tr>
<tr>
<td>GT Mask + SyncDr.</td>
<td>0.1084</td>
<td>0.1027</td>
</tr>
<tr>
<td>Ours (GT Mask) + SyncDr.</td>
<td>0.0681</td>
<td>0.3639</td>
</tr>
</tbody>
</table>

Table 4. **Novel-view synthesis from one image.** We report results on Google Scanned Objects [9]. Note SSIM measures image quality, not novel-view accuracy. See Section 4.3 for analysis.

<table>
<thead>
<tr>
<th></th>
<th>LPiPS ↓</th>
<th>PSNR ↑</th>
<th>SSIM ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>SyncDreamer [26]</td>
<td>0.3221</td>
<td>11.914</td>
<td>0.6808</td>
</tr>
<tr>
<td>SAM + SyncDr.</td>
<td>0.3060</td>
<td>12.432</td>
<td>0.7248</td>
</tr>
<tr>
<td>Ours (SAM Mask) + SyncDr.</td>
<td>0.2848</td>
<td>13.868</td>
<td>0.7211</td>
</tr>
<tr>
<td>GT Mask + SyncDr.</td>
<td>0.2905</td>
<td>12.561</td>
<td>0.7322</td>
</tr>
<tr>
<td>Ours (GT Mask) + SyncDr.</td>
<td>0.2631</td>
<td>14.657</td>
<td>0.7328</td>
</tr>
</tbody>
</table>

qualitative evaluation for 3D reconstruction of occluded objects, ranging from an Escher lithograph to in-the-wild images.

5. Conclusion

In this work, we proposed a novel approach for zero-shot amodal segmentation via synthesis. Our model capitalizes on whole object priors learned by internet-scale diffusion models and unlocks them via fine-tuning on a synthetically generated dataset of realistic occlusions. We then demonstrated that synthesizing the whole object makes it straightforward to equip various computer vision methods with the ability to handle occlusions. In particular, we reported state-of-the-art results on several benchmarks for amodal segmen-
tation, occluded object recognition and 3D reconstruction.

Acknowledgements: This research is based on work partially supported by the Toyota Research Institute, the DARPA MCS program under Federal Agreement No. N660011924032, the NSF NRI Award #1925157, and the NSF AI Institute for Artificial and Natural Intelligence Award #2229929. DS is supported by the Microsoft PhD Fellowship.

References

[31] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis, 2023. 5, 6

Lu Qi, Li Jiang, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Amodal instance segmentation with KINS dataset. In CVPR, 2019. 1, 3

Aleksandar Shtedritski, Christian Rupprecht, and Andrea Vedaldi. What does clip know about a red circle? visual prompt engineering for vlms. In ICCV, 2023. 6, 8

Guanqi Zhan, Weidi Xie, and Andrew Zisserman. A tri-layer plugin to improve occluded detection. BMVC, 2022. 6, 8

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In CVPR, 2018. 8, 9

